Dual model head pose estimation. Fusion of SOTA models. 360° 6D HeadPose detection. All pre-processing and post-processing are fused together, allowing end-to-end processing in a single inference.
[Front side]
Wearing a mask mode - 6DRepNet (RepVGG-B1g2)
Paper
Fine tune (My own training)
Yaw: 3.3193, Pitch: 4.9063, Roll: 3.3687, MAE: 3.8648
[Front side]
Not wearing a mask mode - SynergyNet (MobileNetV2)
Paper
[Rear side]
WHENet
Paper
wget https://github.com/PINTO0309/DMHead/releases/download/1.1.2/yolov4_headdetection_480x640_post.onnx
wget https://github.com/PINTO0309/DMHead/releases/download/1.1.2/dmhead_mask_Nx3x224x224.onnx
wget https://github.com/PINTO0309/DMHead/releases/download/1.1.2/dmhead_nomask_Nx3x224x224.onnx
python demo_video.py
python demo_video.py \
[-h] \
[--device DEVICE] \
[--height_width HEIGHT_WIDTH] \
[--mask_or_nomask {mask,nomask}]
optional arguments:
-h, --help
Show this help message and exit.
--device DEVICE
Path of the mp4 file or device number of the USB camera.
Default: 0
--height_width HEIGHT_WIDTH
{H}x{W}.
Default: 480x640
--mask_or_nomask {mask,nomask}
Select either a model that provides high accuracy when wearing a mask or
a model that provides high accuracy when not wearing a mask.
Default: mask
August 15, 2022 - MAE: 3.8648
https://user-images.githubusercontent.com/33194443/184782685-52aa9fe3-d086-4104-8ea1-00c4a7418142.mp4
https://user-images.githubusercontent.com/33194443/184784102-089a82b9-765a-4431-bf33-43370b5c8174.mp4
Yaw: 3.6266, Pitch: 4.9066, Roll: 3.3734, MAE: 3.9688
Yaw: 3.6129, Pitch: 5.5801, Roll: 3.8468, MAE: 4.3466
_epoch_321.pth
Yaw: 3.3346, Pitch: 5.0004, Roll: 3.5381, MAE: 3.9577
Yaw: 3.3193, Pitch: 4.9063, Roll: 3.3687, MAE: 3.8648
Float32 [N,3,224,224]
Float32 [N,3]
, [Yaw,Roll,Pitch]
@misc{https://doi.org/10.48550/arxiv.2005.10353,
doi = {10.48550/ARXIV.2005.10353},
url = {https://arxiv.org/abs/2005.10353},
author = {Zhou, Yijun and Gregson, James},
title = {WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose},
publisher = {arXiv},
year = {2020},
}
@misc{hempel20226d,
title={6D Rotation Representation For Unconstrained Head Pose Estimation},
author={Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi},
year={2022},
eprint={2202.12555},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@INPROCEEDINGS{wu2021synergy,
author={Wu, Cho-Ying and Xu, Qiangeng and Neumann, Ulrich},
booktitle={2021 International Conference on 3D Vision (3DV)},
title={Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry},
year={2021}
}